Probabilistic Classification Vector Machine at large scale

نویسندگان

  • Frank-Michael Schleif
  • Andrej Gisbrecht
  • Peter Tino
چکیده

Probabilistic kernel classifiers are effective approaches to solve classification problems but only few of them can be applied to indefinite kernels as typically observed in life science problems and are often limited to rather small scale problems. We provide a novel batch formulation of the Probabilistic Classification Vector Machine for large scale metric and non-metric data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High performance of the support vector machine in classifying hyperspectral data using a limited dataset

To prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. A practical way to handle the Hughes problem is preparing a lot of training samples until the size ...

متن کامل

A New Play-off Approach in League Championship Algorithm for Solving Large-Scale Support Vector Machine Problems

There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algori...

متن کامل

Support vector regression with random output variable and probabilistic constraints

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...

متن کامل

Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain

Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...

متن کامل

CombNET-III: A Support Vector Machine Based Large Scale Classifier with Probabilistic Framework

Several research fields have to deal with very large classification problems, e.g. handwritten character recognition and speech recognition. Many works have proposed methods to address problems with large number of samples, but few works have been done concerning problems with large numbers of classes. CombNET-II was one of the first methods proposed for such a kind of task. It consists of a se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015